If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+39x-20=0
a = 2; b = 39; c = -20;
Δ = b2-4ac
Δ = 392-4·2·(-20)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-41}{2*2}=\frac{-80}{4} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+41}{2*2}=\frac{2}{4} =1/2 $
| 2x-2/3+x+2/3=x+1/3-2/9 | | x/4x^2+7x+-10=0 | | 5q+2+2q-3=90 | | 2q-3+5q-2=90 | | -9x=50.000 | | 7x-18=-24 | | (2y+1)9=(y+6)10 | | 36+x=125 | | 125+x=216 | | 4g^2+32g+60=0 | | 4g2+32g+60=0 | | x*23=111 | | b(8-4b)=30 | | 2x+22=7x-3 | | 9c/2=81 | | 5x=6-9 | | 7/(5-x)=0.5 | | 4x+12=2(2x+5 | | 7(2(3+4x))-2x=-9+2(1-15x) | | 7(2(3+4x0)-2x=-9+2(1-15x) | | 7x-98=-6x+149 | | (120-32)0.56=d | | 9x-4+8x+1=180 | | 0=-16t+40t+4.5 | | 3x-10+4x-15=180 | | 0.9x+6=0.6x | | 3z+19=8z-6 | | 0.3333=t-8=-6. | | 19x-50=1/2(7x+10) | | (x+5=8 | | (7m-2)/3=-11 | | 4x13=(4x) |